The Fejer-Riesz type result for some weighted Hilbert spaces of analytic functions in the unit disc
نویسندگان
چکیده
منابع مشابه
Composition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملcomposition operators acting on weighted hilbert spaces of analytic functions
in this paper, we considered composition operators on weighted hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a hilbert-schmidt characterization and characterizes the membership in schatten-class for these operators. also, closed range composition operators are investigated.
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولstudy of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
The Representations and Positive Type Functions of Some Homogenous Spaces
‎For a homogeneous spaces ‎$‎G/H‎$‎, we show that the convolution on $L^1(G/H)$ is the same as convolution on $L^1(K)$, where $G$ is semidirect product of a closed subgroup $H$ and a normal subgroup $K $ of ‎$‎G‎$‎. ‎Also we prove that there exists a one to one correspondence between nondegenerat $ast$-representations of $L^1(G/H)$ and representations of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2011
ISSN: 1232-9274
DOI: 10.7494/opmath.2011.31.4.605